How to Assess
Trustworthy AI
in practice

Roberto V. Zicari
Z-Inspection® Initiative
http://z-inspection.org

Innovation, Governance and AI4Good
The Responsible AI Forum
Munich, December 6, 2021

Z-inspection® is a registered trademark.
The content of this work is open access distributed under the terms and conditions of the
Creative Commons (Attribution-NonCommercial-ShareAlike
CC BY-NC-SA) license (https://creativecommons.org/licenses/by-nc-sa/4.0/)
1. We consider the View of contemporary Western European democracy

Fundamental values

"The essence of a modern democracy is based on respect for others, expressed through support for fundamental human rights."

-- Christopher Hodges, Professor of Justice Systems, and Fellow of Wolfson College, University of Oxford
2. We use the EU Framework for Trustworthy Artificial Intelligence

The EU High-Level Expert Group on AI defined ethics guidelines for trustworthy artificial intelligence:

- **(1) lawful** - respecting all applicable laws and regulations
- **(2) ethical** - respecting ethical principles and values
- **(3) robust** - both from a technical perspective while taking into account its social environment

EU Framework for Trustworthy Artificial Intelligence

Four ethical principles, rooted in fundamental rights
(i) Respect for human autonomy
(ii) Prevention of harm
(iii) Fairness
(iv) Explicability

There may be tensions between these principles.

EU Requirements for Trustworthy AI

3. How to assess Trustworthy AI in practice?
They offer a static checklist and web tool (ALTAI) for self-assessment, but do not validate claims, nor take into account changes of AI over time.

The AI HLEG trustworthy AI guidelines are not a law and are not contextualized by the domain they are involved in. The meaning of some of the seven requirements is not anchored to the context (e.g., fairness, wellbeing, etc.).

We created an orchestration process to help teams of skilled experts to assess the ethical, technical, domain specific and legal implications of the use of an AI-product/services within given contexts.

Z-inspection® is a registered trademark.
This work is distributed under the terms and conditions of the Creative Commons (Attribution-NonCommercial-ShareAlike CC BY-NC-SA) license.
Z-inspection® can be applied to the Entire AI Life Cycle

- Design
- Development
- Deployment
- Monitoring
Based on our research work
On Assessing Trustworthy AI: Best Practices

- Assessing Trustworthy AI. Best Practice: **Machine learning as a supportive tool to recognize cardiac arrest in emergency calls.** (1st phase completed. September 2020-March 2021)

- Co-design of Trustworthy AI. Best Practice: **Deep Learning based Skin Lesion Classifiers.** (1st phase completed. November 2020-March 2021)

- Assessing Trustworthy AI. Best Practice: **Deep Learning for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients.** (completed Dec. 2021)
We use a holistic approach

We use a *holistic* approach, rather than monolithic and static ethical checklists.
At all stages of the AI life cycle, it is important to bring together a broader set of stakeholders.

We create an interdisciplinary team of experts.
We use Socio-technical Scenarios to identify *issues*

By collecting relevant resources, a team of interdisciplinary experts create socio-technical scenarios and analyze them to describe:

- **the aim of the AI systems,**
- **the actors and their expectations and interactions,**
- **the process where the AI systems are used,**
- **the technology and the context** (*ecosystem*).

Resulting in a number of *issues* to be assessed.
We develop an evidence base

This is an iterative process among experts with different skills and background with goal to:

- Understand technological capabilities and limitations
- Build a stronger evidence base to support claims and identify tensions (domain specific)
- Understand the perspective of different members of society

We use a consensus process based on mappings. *Open to close vocabulary*

We map *issues* freely described (*open vocabulary*) by the interdisciplinary team of experts) to some of the 4 ethical principles and 7 requirements for Trustworthy AI (*closed vocabulary*)

We rank *mapped issues* by relevance depending on the context. (e.g. Transparency, Fairness, Accountability)
We give Recommendations

- Appropriate use;

- Remedies: If risks are identified, we recommend ways to mitigate them (when possible);

- Ability to redress.
Z-inspection® Process in a Nutshell

Set-Up

- Pre-Conditions
 - Verify the pre-conditions, including the initial questions, the legal admissibility and the absence of conflicts of interest.
- Team
 - Form an initial team of multidisciplinary experts.
- Boundaries and Context
 - Define and agree upon the boundaries and context of the assessment.

Assess

I. Analyze Socio-technical Scenarios
 - Describe the aim of the AI system, the actors and their expectations and interactions, the processes, the technology and the context.

II. Identify Ethical Issues and Tensions
 Consensus building.

III. Map to trustworthy AI
 - Map ethical issues and tensions onto the ethical categories established by the EU's Guidelines for Trustworthy AI.

Resolve

- Resolve Tensions
 - Address Ethical Tensions, resolve when possible. Give Recommendations to the relevant stakeholders.

Protocol

- a protocol (log) to record the Z-Inspection® process over time.
How to handle IP

- Clarify what is and how to handle the IP of the AI and of the part of the entity/company to be examined.

- Identify possible restrictions to the Inspection process, in this case assess the consequences (if any)

- Define if and when Code Reviews is needed/possible. For example, check the following preconditions (*):
 - There are no risks to the security of the system
 - Privacy of underlying data is ensured
 - No undermining of intellectual property

Define the implications if any of the above conditions are not satisfied.

(*) Source: “Engaging Policy Shareholders on issue in AI governance” (Google)
Resources

http://z-inspection.org