How to Assess Trustworthy AI
with Z-inspection®: An Overview

Roberto V. Zicari
Z-Inspection® Initiative
http://z-inspection.org

Graduate School of Data Science, SNU, Seoul, Fall 2023.

Z-inspection® is a registered trademark.

The content of this work is open access distributed under the terms and conditions of the Creative Commons (Attribution-NonCommercial-ShareAlike CC BY-NC-SA) license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
Z-Inspection®: A Process to Assess Trustworthy AI: An Overview
We consider the View of contemporary Western European democracy

Fundamental values

"The essence of a modern democracy is based on respect for others, expressed through support for fundamental human rights."

-- Christopher Hodges, Professor of Justice Systems, and Fellow of Wolfson College, University of Oxford
The EU High-Level Expert Group on AI defined ethics guidelines for trustworthy artificial intelligence:

- (1) **lawful** - respecting all applicable laws and regulations
- (2) **ethical** - respecting ethical principles and values
- (3) **robust** - both from a technical perspective while taking into account its social environment

We use Four Ethical Principles

Four ethical principles, rooted in fundamental rights

(i) Respect for human autonomy
(ii) Prevention of harm
(iii) Fairness
(iv) Explicability

There may be tensions between these principles.

We use the Seven Requirements and Sub-requirements for Trustworthy AI

Challenges and Limitations of the EU Framework for Trustworthy AI

They offer a **static checklist** and web tool (ALTAI) for self-assessment, but *do not validate claims*, *nor take into account changes of AI over time*.

The AI HLEG trustworthy AI **guidelines are not a law and are not contextualized by the domain they are involved in.** The meaning of some of the seven requirements is not anchored to the context (e.g., fairness, wellbeing, etc.).

How to assess Trustworthy AI in practice?
We created a participatory process to help teams of skilled experts to assess the ethical, technical, domain specific and legal implications of the use of an AI-product/services within given contexts.

Z-inspection® is a registered trademark.

This work is distributed under the terms and conditions of the Creative Commons (Attribution-NonCommercial-ShareAlike CC BY-NC-SA) license.
Z-inspection® Process in a Nutshell

Set-Up

- **Pre-Conditions**
 Verify the pre-conditions, including the initial questions, the legal admissibility and the absence of conflicts of interest.

- **Team**
 Form an initial team of multi-disciplinary experts.

- **Boundaries and Context**
 Define and agree upon the boundaries and context of the assessment.

Assess

- **I**
 Analyze Socio-technical Scenarios
 Describe the aim of the AI system, the actors and their expectations and interactions, the processes, the technology and the context.

- **II**
 Identify Ethical Issues and Tensions
 Consensus building.

- **III**
 Map to trustworthy AI
 Map ethical issues and tensions onto the ethical categories established by the EU’s Guidelines for Trustworthy AI.

- **IV**
 Execute
 Choose a strategy to perform the inspection; Define and execute Paths; Provide Feedback.

Resolve

- **Resolve Tensions**
 Address Ethical Tensions, resolve when possible; Give Recommendations to the relevant stakeholders.

Protocol

A protocol (log) to record the Z-Inspection® process over time.
Z-inspection® process can be applied to the Entire AI Life Cycle

- Design
- Development
- Deployment
- Monitoring
Post hoc Assessment

For our course we will use the process to assess AI Systems already designed, implemented and deployed. So called post hoc assessment. Post hoc in Latin means 'after this'.

(ante hoc in Latin means “before this”)
Based on our research work
Best Practices

Post hoc assessments

- Assessing Trustworthy AI. Best Practice: AI for Predicting Cardiovascular Risks (Jan. 2019-August 2020)

- Assessing Trustworthy AI. Best Practice: Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. (September 2020-March 2021)

Best Practices

Ante hoc Assessment

- **Co-design** of Trustworthy AI. Best Practice: Deep Learning based Skin Lesion Classifiers. *(November 2020-March 2021)*
Set Up

- Verify Pre-Conditions
- Create a Team
- Define the Boundaries and Context
Verify the pre-conditions, including the initial questions, the legal admissibility and the absence of conflict of interests.

- Who requested the inspection?
- Why carry out an inspection?
- For whom is the inspection relevant?
- Is it recommended or required (mandatory inspection)?
Pre-Conditions (cont.)

- What are the sufficient vs. necessary conditions that need to be analyzed?
- How are the inspection results to be used?
- Will the results be shared (public) or kept private?
- Are there conflict of interests?
Define the implications if any of the above conditions are not satisfied. For example:

- Which stakeholders (if any) have been left out of scope? For what reason(s)?
- Between participants, how will conflicts of interest be addressed?
- Will the inspection be revisited at a later date? Will the participants change?
In the Set Up phase we create an interdisciplinary assessment team composed of a diverse range of experts.

Depending on the use case (and domain), the team may include: philosophers, healthcare ethicists, healthcare domain experts (specialists, such as radiologists, and other clinicians, and public health researchers), legal researchers, ethics advisory, social scientists, AI engineers, and patient representatives.
We include a broader set of stakeholders

At all stages of the AI life cycle, it is important to bring together a broader set of stakeholders.

We create an interdisciplinary team of experts.
Ensure that a variety of viewpoints are expressed

This interdisciplinarity is one of the most important aspects of our approach to ensure that a variety of viewpoints are expressed when assessing the trustworthiness of an AI system.

The choice of the experts have a ethical implication!
Practical Suggestion

- Choose the experts in the team by **required skills**.

Lead: coordinates the process;
Rapporteur: appointed to report on the proceedings of its meetings.
Ethicist(s): help the other experts;
Domain expert(s): better more then one with different view points;
Legal expert(s): related to the Domain;
Technical expert(s): Machine Learning, Deep Learning;
(Social Scientists, Policy Makers, Communication, others)
Representative of end users.
Practical Suggestion

- Team members should be selected based primarily on skills required/expertise – availability and interest in the case
- Motivation is essential but should not be #1 criteria for involvement.
- Later additions of experts to the team should be limited.
The main challenge is to make sure that all experts have a holistic view of the process and a good understanding of the use case.

For that, all team members and relevant use case stakeholders need to be trained or train themselves on the EU regulation / Z-Inspection® process.
The role of Philosophers / Ethicists

- Applied Ethics

- They should act as “advisors” to rest of the team, be part of the process to identify ethical tensions, be part of the mapping to the Trustworthy AI Framework and be available for ethics related questions.

- If they have use case specific practical expertise (e.g. health / medical ethics) they could lead the part of the process that is to identify ethical tensions.
The set-up phase also includes the definition of the boundaries of the assessment, taking into account that we do not assess the AI system in isolation but rather consider the social-technical interconnection with the ecosystem(s) where the AI is developed and/or deployed.
Some of the most important ethical and political considerations of AI development rest on the decision to include or exclude parts of the context in which the system will operate.
Assess

- Socio Technical Scenarios
- Claims Arguments and Evidence
- Develop and Evidence Base
- Ethical Tensions and Trade Off
We use a holistic approach, rather than monolithic and static ethical checklists.
By collecting relevant resources, the team of interdisciplinary experts create socio-technical scenarios and analyze them to describe:

- **the aim of the AI systems,**
- **the actors and their expectations and interactions,**
- **the process where the AI systems are used,**
- **the technology and the context (ecosystem).**

Resulting in a number of **issues** (possible risks) to be assessed
2. We use the Claims, Arguments and Evidence (CAE) framework

Look for Claims:

Claims – “assertions put forward for general acceptance. They are typically statements about a property of the system or some subsystem. Claims that are asserted as true without justification become **assumptions** and claims supporting an argument are called sub claims.”
Provide Evidence:

Evidence “that is used as the basis of the justification of the claim.

Sources of evidence may include the design, the development process, prior field experience, testing, source code analysis or formal analysis”, peer-reviewed journals articles, peer-reviewed clinical trials, etc.
Arguing:

Arguments link the evidence to the claim. They are defined as *Toulmin’s warrants* and are the “statements indicating the general ways of arguing being applied in a particular case and implicitly relied on and whose trustworthiness is well established”, together with the validation for the scientific and engineering laws used.
Stephen Toulmin, a modern rhetorician, developed a model for analyzing the kind of argument you read and hear every day, in newspapers and on television, at work, in classrooms, and in conversation. Toulmin’s model focuses on identifying the basic parts of an argument.

Toulmin identifies the three essential parts of any argument as the **claim**; the **data** (also called **grounds** or **evidence**), which support the claim; and the **warrant**.

Source: https://www.blinn.edu/writing-centers/pdfs/Toulmin-Argument.pdf
This is an iterative process among experts with different skills and background with goal to:

- Understand technological capabilities and limitations
- Build a stronger evidence base to support claims and identify tensions (*domain specific*)
- Understand the perspective of different members of society

Technology is generally designed for a highly specific purpose, however, it is not always clear what the technologies unintended harm might be.

Therefore, an important part of our assessment process is to build an evidence base through the socio-technical scenarios to identify tensions as potential ethical issues.
4. Identifying “issues”

- When a Claim has no evidence it becomes an assumptions, and this could be a potential risk. We call them “issues”.

- How to describe “issues”?

- Use free text and an open vocabulary
5. Concept building

„An important obstacle to progress on the ethical and societal issues raised by AI-based systems is the ambiguity of many central concepts currently used to identify salient issues.„

- Terminological overlaps
- Differences between disciplines
- Differences across cultures and publics
- Conceptual complexity

1. Mapping and clarifying ambiguities
2. Bridging disciplines, sectors, publics and cultures
3. Building consensus and managing disagreements

6. Identify Tensions and Trade-offs

- **Tensions** may arise between ethical principles, for which there is no fixed solution.

- “In line with the EU fundamental commitment to democratic engagement, due process and open political participation, *methods of accountable deliberation to deal with such tensions should be established.*”

 source: Ethics Guidelines for Trustworthy AI. Independent High-Level Expert Group on Artificial Intelligence. European commission, 8 April, 2019
“We use the umbrella term ‘tension’ to refer to different ways in which values can be in conflict, some more fundamentally than others.”

“When we talk about tensions between values, we mean tensions between the pursuit of different values in technological applications rather than an abstract tension between the values themselves.”

To help the process, especially as a help to experts who might have not sufficient knowledge in ethics, we used a sample of catalog of predefined ethical tensions.

We have chosen the catalog defined by the Nuffield Foundations (Whittlestone et al., 2019)

Catalogue of Examples of Tensions

- Accuracy vs. Fairness
- Accuracy vs. Explainability
- Privacy vs. Transparency
- Quality of services vs. Privacy
- Personalisation vs. Solidarity
- Convenience vs. Dignity
- Efficiency vs. Safety and Sustainability
- Satisfaction of Preferences vs. Equality

Identifying further tensions

„Thinking about tensions could also be enhanced by systematically considering different ways that tensions are likely to arise. We outline some conceptual lenses that serve this purpose“

Identifying further tensions

Winners versus losers. Tensions sometimes arise because the costs and benefits of ADA-based technologies are unequally distributed across different groups and communities.

Short term versus long term. Tensions can arise because values or opportunities that can be enhanced by ADA-based technologies in the short term may compromise other values in the long term.

Local versus global. Tensions may arise when applications that are defensible from a narrow or individualistic view produce negative externalities, exacerbating existing collective action problems or creating new ones.
Use a Classification of Ethical Tensions

- **True dilemma**, i.e. "a conflict between two or more duties, obligations, or values, both of which an agent would ordinarily have reason to pursue but cannot";
- **Dilemma in practice**, i.e. "the tension exists not inherently, but due to current technological capabilities and constraints, including the time and resources available for finding a solution";
- **False dilemmas**, i.e. "situations where there exists a third set of options beyond having to choose between two important values".
7. Mappings: from Open to Close vocabulary

We map issues freely described (open vocabulary) by the interdisciplinary team of experts) to some of the 4 ethical principles and 7 requirements (sub-requirements) for Trustworthy AI (closed vocabulary).

We rank mapped issues by relevance depending on the context. (e.g. Transparency, Fairness, Accountability)
The resolve phase completes the process by addressing ethical tensions and by giving recommendations to the key stakeholders.
Recommendations

- Appropriate use;

- Remedies: If risks are identified, we recommend ways to mitigate them (when possible);

- Ability to redress.
Tools and other frameworks

- EU ALTAI TRUSTWORTHY AI ASSESSMENT LIST and web tool;

They will be used in the Z-Inspection® process for this course.

Not used for this course:

The Fundamental Rights and Algorithm Impact Assessment (FRAIA)
1. **TRUSTWORTHY AI ASSESSMENT LIST : Check List of questions.** The AI HLEG translated these requirements into a detailed Assessment List, taking into account feedback from a six month long piloting process within the European AI community.

2. **ALTAI web tool**: the Vice-Chair of the AI HLEG and his team at the Insight Centre for Data Analytics at University College Cork, developed a prototype web based tool, to practically guide developers and deployers of AI through an accessible and dynamic checklist.

 https://altai.insight-centre.org/
The Fundamental Rights and Algorithm Impact Assessment (FRAIA)

The Fundamental Rights and Algorithm Impact Assessment (FRAIA) helps to map the risks to human rights in the use of algorithms and to take measures to address this. In all stages, respect for fundamental rights must be ensured.

The FRAIA includes a special sub-section that pays attention to identifying risks of infringing fundamental rights and to the need to provide a justification for doing so.